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Abstract

An analysis for sound scattering by simple compound viscoelastic structures immersed in viscous fluids is
outlined. The dynamic viscoelastic properties of the scatterer and the viscosity of the surrounding fluid are
rigorously taken into account. The Havriliak–Negami model for viscoelastic material behaviour along with
the appropriate wave-harmonic field expansions and the pertinent boundary conditions are employed to
develop a closed-form solution in form of an infinite series. Subsequently, the associated acoustic field
quantities such as the scattered farfield pressure and the form function amplitude are evaluated for given
sets of viscoelastic material properties. Numerical results reveal that the scattered farfield pressure
directivity patterns are highly dependent on the coating thickness, especially for the low-damping polymeric
coating at small and intermediate non-dimensional frequencies. At these frequencies, the high-damping
polymeric coating leads to very uniform pressure patterns for essentially all coating thicknesses.
Furthermore, numerical solution of the associated eigenfrequency equation confirms that the
comparatively high (moderate) scattered farfield pressure amplitudes corresponding to the high-damping
(low-damping) polymer at low and intermediate frequencies is due to the fact that the eigenfrequencies
associated with the viscoelastic resonances predominantly fall inside this frequency range. Limiting cases
are examined and fair agreements with well-known solutions are established.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Historically, sound wave scattering by cylindrical and spherical objects has been investigated
quite extensively since the works of Rayleigh [1] and Lamb [2]. For example, the scattering of
acoustic waves has been broadly studied for a rigid, fixed, solid sphere and circular cylinder [3]; for
an elastic solid sphere and a circular cylinder [4,5], and for elastic spherical and cylindrical shells [6].
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Junger and Garrelick [7] applied a Kirchhoff-type formulation to compute the backscattering
cross-sections of rigid spheres and cylinders covered with partial coatings of arbitrary impedance.
Ferri et al. [8] addressed the scattering of acoustic plane waves from submerged objects (cylinders)
that are partially covered with a compliant coating. Partridge [9] applied the deformed cylinder
method (DCM) to study acoustic scattering from elastic bodies (shells) that are covered to varying
degrees by a viscoelastic absorbing layer. Honarvar and Sinclair [10] developed a detailed
formulation for the scattering of an obliquely incident plane acoustic wave from a submerged clad
rod. Roumeliotis and Kakogiannos [11] treated the scattering of a plane acoustic wave normal to
the axis of an infinite impenetrable or penetrable cylinder of acoustically small radius, coated by a
penetrable cylinder. The latter authors also studied the scattering of a plane acoustic wave from
an impenetrable or a penetrable sphere of acoustically small radius coated by another penetrable
sphere [12]. Similarly, in a series of articles, the problems of low-frequency scattering of a point
source field by a soft or a hard small sphere with a lossy coating [13], by a coated sphere with a
resistive core [14], and by a penetrable lossy sphere with a lossy coating [15] have been treated.
Investigations of sound scattering by various objects with allowance for various dissipation

mechanisms, such as viscous and thermal losses and complicated boundary or scatterer models,
have been reported in a great many papers [16,17]. The sustained interest in these problems is due
to the importance of scattering and attenuation in many areas of research such as cloud physics,
rocket propulsion, dispersion ultrasonics and underwater acoustics. The inclusion of viscosity in
the fluid model was first made by Sewell [18], who treated sound absorption by rigid, fixed spheres
and circular cylinders in a viscous gas. Later, Lamb [2] simplified Sewell’s treatment and studied
sound scattering by rigid, fixed or movable spheres in a viscous fluid. Lin and Raptis [19]
presented analytical solutions as well as numerical results for the boundary value problem
concerning the interaction of a plane sound wave with elastic solid cylinders and spheres
immersed in viscous fluids. They studied the effects of the fluid viscosity and scatterer’s elasticity
on acoustic-wave scattering patterns and acoustic-radiation force. Subsequently, the same authors
presented a general analysis for scattering of a plane sound wave obliquely incident upon a thin,
elastic circular cylinder (rod) immersed in an unbounded viscous fluid [20]. Hasegawa and
Watanabe [21] modified the standard harmonic series theory to study the effect of hysteresis type
of absorption on the acoustic field of an absorbing sphere immersed in an ideal fluid. Their
analysis, however, is applicable to materials with frequency-independent sound absorption per
wavelength and may not be considered to be satisfactory from the standpoint of generality and
completeness. Just recently, Hasheminejad and Harsini [22] employed the novel features of
Havriliak–Negami (HN) model to investigate effects of dynamic viscoelastic properties on
acoustic scattering by a solid sphere submerged in a viscous fluid. Their numerical results revealed
a generally lower (higher) level of scattered field directionality for the scatterer with a higher
(lower) degree of viscoelasticity (damping). The prime objective of the present work is to use HN
theory to investigate acoustic interaction of sound waves with viscoelastically coated spheres and
cylinders. The proposed analysis is of particular interest in every practical application in which the
frequency (body dimension) is so low (small) that the viscous boundary layer effects become
consequential (i.e., the body dimension is comparable to the viscous boundary layer in the
surrounding fluid [19,20,22]). For example, it can be useful for ultrasonic characterization of
polymer-coated colloidal particles (dispersions) [23,24]. It can also provide a valuable model for
nondestructive evaluation (NDE) and on-line monitoring of the physical properties (material
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characterization) of various cylindrical components such as polymer-clad thin metallic rods
(wires) using resonance acoustic spectroscopy (RAS) techniques [25].

2. Viscoelastic model

Accurate mathematical modelling of viscoelastic materials is difficult mainly because their
measured dynamic properties are frequency and temperature dependent, and can also depend on
the type of deformation and amplitude. Consequently, mathematical models describing the
behaviour of viscoelastic materials cannot be clearly linked to the physical principles involved and
thus empirical approaches are used. The most popular approach, called the structural damping
model, uses complex constants as the material moduli. Strictly speaking, for viscoelastic and
isotropic materials, two independent complex moduli are necessary for mechanical characteriza-
tion; for example the Young’s modulus E�ðoÞ ¼ E0ðoÞ þ iE00ðoÞ and the shear modulus G�ðoÞ ¼
G0ðoÞ þ iG00ðoÞ: Both moduli, in principle, are frequency dependent. The main difficulty is the
simultaneous presence of the Young’s and shear complex moduli as well as the Poisson ratio.
Practically, however, for viscoelastic isotropic materials the hypothesis of a constant (frequency
independent) and real Poisson ratio is often adopted [26]. This assumption has been validated
with some experiments [27], revealing that the imaginary part of the Poisson ratio of elastomers is
less than 1% of the real part.
Frequency dependence of G0ðoÞ and G00ðoÞ in the viscoelastic transition region has been the

object of many experimental and theoretical studies [28]. The most successful description for the
frequency dependence of the complex modulus of polymers in the glass transition region is
perhaps given by Havriliak–Negami model [29]. According to HN model, the real and imaginary
parts of the complex modulus are given by [30]

G0ðoÞ ¼ GN þ
ðG0 � GNÞ cosðbkÞ

½1 þ 2oata cos gþ o2at2a�b=2
; ð1aÞ

G00ðoÞ ¼
ðGN � G0Þ sinðbkÞ

½1 þ 2oata cos gþ o2at2a�b=2
; ð1bÞ

where g ¼ ap=2; and the loss factor is specified by

ZðoÞ ¼
G00ðoÞ
G0ðoÞ

¼
ð1 � wÞ sinðbkÞ

½1 þ 2oata cos gþ o2at2a�b=2 � ð1 � wÞ cosðbkÞ
ð2Þ

in which w ¼ G0=GN; and

kðoÞ ¼ tan�1 oata sin g
1 þ oata cos g

: ð3Þ

Note that ZðoÞ depends only on the ratio w ¼ G0=GN and not on their individual values.
Furthermore, G0 (relaxed modulus) and GN (unrelaxed modulus) are the limiting values of the
shear modulus at low and high frequencies, respectively, tð¼ 1=o0Þ is the relaxation time
associated with the polymer glass transition centre frequency (loss factor peak), a is a
dimensionless parameter ð0oao1Þ that governs the width of the relaxation, and b is another
dimensionless parameter ð0obo1Þ that governs the asymmetry of the relaxation.
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3. Governing field equations

Following the standard methods of continuum mechanics, the linearized equations of
continuity and Navier–Stokes for a viscous non-heat-conducting compressible fluid are,
respectively [31],

@r
@t

þ rr 
 u ¼ 0; ð4aÞ

r
@u

@t
þrp ¼ mr2uþ 1

3
mþ mb

� �
rðr 
 uÞ: ð4bÞ

Here, r is the total mass density, p represents the deviation of pressure from its mean value, u is
the fluid velocity, and m and mb are the shear and the expansive (bulk) coefficient of viscosity,
respectively. For a barotropic fluid, the linearized equation of state is p ¼ c2r0; where, as usual, c
is the ideal speed of sound evaluated at ambient conditions and r0 is the deviation of density from
equilibrium (i.e., the time-varying part of the density). Eqs. (4) can readily be combined to yield a
single equation for the velocity vector u:

@2u

@t2
� c2rðr 
 uÞ ¼

m
r
r2 @u

@t
þ

1

r
1
3
mþ mb

� �
r r 


@u

@t

� �
: ð5Þ

The Helmholtz decomposition theorem allows one to resolve the velocity fields as the
superposition of longitudinal and transverse vector components

u ¼ �rjþr� w: ð6Þ

Introducing the above decomposition into Eq. (5), making use of problem symmetry, w ¼
ð0:; 0:;cÞ; and the calibration condition, r 
 w ¼ 0; a set of two equations is deduced

@2j
@t2

¼ c2 þ
1

r
4
3
mþ mb

� � @
@t

� �
r2j; ð7aÞ

@c
@t

¼
m
r
r2c: ð7bÞ

If the incident wave is assumed to be monochromatic, one expects solutions of the form

jðr; y; tÞ ¼ Re½jðr; y;oÞe�iot�; ð8aÞ

cðr; y; tÞ ¼ Re½cðr; y;oÞe�iot�; ð8bÞ

where Re indicates the real part of a complex number, and quantities jðr; y;oÞ and cðr; y;oÞ may
be complex. Incorporation of above assumptions in Eqs. (7), after some manipulations, yields

ðr2 þ k2
c Þj ¼ 0; ð9aÞ

ðr2 þ k2
s Þc ¼ 0; ð9bÞ

where the complex compressional and shear wave numbers in the viscous fluid are given by [31]

kc ¼
o
c

1 þ i
om

2rc2
4
3
þ

mb

m

� �� �
; ð10aÞ
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ks ¼ ð1 þ iÞ
ffiffiffiffiffiffiffi
or
2m

r
: ð10bÞ

The viscoelastic material under consideration is assumed to be linear, macroscopically
homogeneous, and isotropic for which the constitutive equation, for harmonic time functions,
may be written as [32]

sij ¼ l�ðoÞdijekk þ 2m�s ðoÞeij; ð11Þ

where dij is Kronecker delta symbol, l�ðoÞ and m�s ðoÞ are complex, frequency-dependent Lame
functions which are determined according to the standard relations

l�ðoÞ ¼
2n

ð1 � 2nÞ
G�ðoÞ; ð12aÞ

m�s ðoÞ ¼ G�ðoÞ ð12bÞ

in which the real and imaginary parts of the complex shear modulus, G�ðoÞ; are specified in
Eqs. (1). The wave motion inside the viscoelastic scatterer is governed by the classical Navier’s
equation [33]

rs

@2U

@t2
¼ m�s r

2Uþ ðl� þ m�s Þrðr 
UÞ ð13Þ

subject to the appropriate boundary conditions. Here, rs is the solid material density, and U is the
vector displacement that can advantageously be expressed as sum of the gradient of a scalar
potential and the curl of a vector potential

U ¼ rFþr� W ð14Þ

with the condition r 
 W ¼ 0; and W ¼ ð0:; 0:;CÞ: The above decomposition enables one to
separate the dynamic equation of motion into the classical Helmholtz equations:

ðr2 þ K�2
c ÞF ¼ 0; ð15aÞ

ðr2 þ K�2
s ÞC ¼ 0; ð15bÞ

where K�
c and K�

s are complex wave numbers, known as [32]

K�
c ¼

offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½l�ðoÞ þ 2m�s ðoÞ�=rs

q ; ð16aÞ

K�
s ¼

offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�s ðoÞ=rs

p : ð16bÞ

4. Scattering of sound waves by a compound sphere

In this section, the general problem of acoustic scattering from a compound viscoelastic sphere
suspended in an unbounded viscous fluid is considered. The geometry and the co-ordinate system
used are depicted in Fig. 1a. Mathematically, the dynamics of the problem may be expressed in
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terms of appropriate scalar and vector potentials. The expansion of the incident plane wave in
spherical co-ordinate has the form [34]

jinc:ðr; yÞ ¼ f0

XN
n¼0

ð2n þ 1ÞinjnðkcrÞPnðcos yÞ; ð17Þ

where jn are spherical Bessel functions [35], Pn are Legendre polynomials, and f0 is the amplitude
of the incident wave. Likewise, noting that the fluid medium is unbounded and keeping in mind
the radiation condition, the solutions of the Helmholtz equations for the potentials can be
expressed as a linear combination of outgoing spherical waves:

jcðr; yÞ ¼
XN
n¼0

ð2n þ 1ÞinAnhð1Þn ðkcrÞPnðcos yÞ; ð18aÞ

cðr; yÞ ¼
XN
n¼1

ð2n þ 1ÞinBnhð1Þ
n ðksrÞP1

nðcos yÞ; ð18bÞ

where hð1Þn are spherical Hankel functions of first kind [35], P1
n ¼ �ðd=dyÞPn are associated

Legendre functions, and An and Bn are unknown scattering coefficients. Similarly, the longitudinal
and transverse waves in the viscoelastic coating are represented by

F1ðr; yÞ ¼
XN
n¼0

ð2n þ 1Þin Cnhð1Þ
n ðK�

c1rÞ þ Dnhð2Þ
n ðK�

c1rÞ
� 

Pnðcos yÞ; ð19aÞ

C1ðr; yÞ ¼
XN
n¼1

ð2n þ 1Þin Enhð1Þ
n ðK�

s1rÞ þ Fnhð2Þ
n ðK�

s1rÞ
� 

P1
nðcos yÞ; ð19bÞ

where hð2Þn are spherical Hankel functions of second kind [35], and the corresponding waves in the
core medium are

F2ðr; yÞ ¼
XN
n¼0

ð2n þ 1ÞinGnjnðK
�
c2rÞPnðcos yÞ; ð20aÞ

C2ðr; yÞ ¼
XN
n¼1

ð2n þ 1ÞinQnjnðK
�
s2rÞP1

nðcos yÞ; ð20bÞ

where the subscripts 1 and 2 refer to medium I (coating) and medium II (core), respectively, and
the superscript � indicates that complex, frequency-dependent viscoelastic properties are involved.
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Now considering the basic field equations in spherical co-ordinates, the velocity components of
the waves in r- and y-directions in terms of potentials in the viscous fluid are [31]

ur ¼ �
@j
@r

þ
1

r sin y
@ðc sin yÞ

@y
; ð21aÞ

uy ¼ �
1

r

@j
@y

�
1

r

@ðrcÞ
@r

; ð21bÞ

where j ¼ jinc: þ jc: Similarly, the displacements in the viscoelastic scatterer are [33]

Us1
r ¼

@F1

@r
þ

1

r sin y
@ðC1 sin yÞ

@y
; Us2

r ¼
@F2

@r
þ

1

r sin y
@ðC2 sin yÞ

@y
;

Us1
y ¼

1

r

@F1

@y
�

1

r

@ðrC1Þ
@r

; Us2
y ¼

1

r

@F2

@y
�

1

r

@ðrC2Þ
@r

: ð22Þ

The stress components in the viscous fluid are [31]

srr ¼ �p þ ðmb �
2
3
mÞDþ 2mð@ur=@rÞ ð23aÞ

sry ¼ m
1

r

@ur

@y
þ
@uy

@r
�

uy

r

� �
ð23bÞ

where

p ¼ �iorjþ ðmb þ
4
3
mÞD ð24Þ

in which D ¼ r 
 u ¼ �r2j ¼ k2
cj: The stresses in the viscoelastic scatterer are [33]

ss1
rr ¼ 2m�s1

@Us1
r

@r
þ l�1 e1; ss2

rr ¼ 2m�s2

@Us2
r

@r
þ l�2 e2;

ss1
ry ¼ m�s1

1

r

@Us1
r

@y
þ
@Us1

y

@r
�

Us1
y

r

� �
; ss2

ry ¼ m�s2

1

r

@Us2
r

@y
þ

@Us2
y

@r
�

Us2
y

r

� �
; ð25Þ

where e1 ¼ r 
Us1 ¼ r2F1 ¼ �K�2
c1 F1; and e2 ¼ r 
Us2 ¼ r2F2 ¼ �K�2

c2 F2:
The appropriate boundary conditions that must hold at the interfaces of the core material with

the coating, and the coating with the viscous fluid medium are continuity of velocity and stress
components, i.e.,

urðr; y;oÞ�r¼a ¼ �ioUs1
r ðr; y;oÞ�r¼a; Us1

r ðr; y;oÞ�r¼b ¼ Us2
r ðr; y;oÞ�r¼b;

uyðr; y;oÞ�r¼a ¼ �ioUs1
y ðr; y;oÞ�r¼a; Us1

y ðr; y;oÞ�r¼b ¼ Us2
y ðr; y;oÞ�r¼b;

srrðr; y;oÞ�r¼a ¼ ss1
rr ðr; y;oÞ�r¼a; ss1

rr ðr; y;oÞ�r¼b ¼ ss2
rr ðr; y;oÞ�r¼b;

sryðr; y;oÞ�r¼a ¼ ss1
ryðr; y;oÞ�r¼a; ss1

ryðr; y;oÞ�r¼b ¼ ss2
ryðr; y;oÞ�r¼b: ð26Þ

The unknown scattering coefficients shall be determined by imposing the stated boundary
conditions. Employing expansions (17)–(20) in the field equations (21)–(25), and substituting the
obtained results into the boundary conditions (26), one obtains, for the nth mode
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� kcAnhð1Þ0
n ðkcaÞ þ

nðn þ 1Þ
a

Bnhð1Þ
n ðksaÞ þ ioK�

c1½Cnhð1Þ0
n ðK�

c1aÞ þ Dnhð2Þ
0

n ðK�
c1aÞ�

þ io
nðn þ 1Þ

a
½Enhð1Þ

n ðK�
s1aÞ þ Fnhð2Þ

n ðK�
s1aÞ� ¼ kcf0j

0
nðkcaÞ; ð27aÞ

Anhð1Þ
n ðkcaÞ � ½hð1Þn ðksaÞ þ ksahð1Þ

0

n ðksaÞ�Bn � io½Cnhð1Þ
n ðK�

c1aÞ þ Dnhð2Þ
n ðK�

c1aÞ�

� iof½hð1Þn ðK�
s1aÞ þ k�s1ahð1Þ

0

n ðK�
s1aÞ�En þ ½hð2Þ

n ðK�
s1aÞ þ K�

s1ahð2Þ
0

n ðK�
s1aÞ�Fng

¼ �f0jnðkcaÞ; ð27bÞ

½ðior� 2mk2
c Þh

ð1Þ
n ðkcaÞ � 2mk2

c hð1Þ
00

n ðkcaÞ�An �
2mnðn þ 1Þ

a2
½hð1Þ

n ðksaÞ � ksahð1Þ
0

n ðksaÞ�Bn

� K�2
c1 f½2m�s1hð1Þ

00

n ðK�
c1aÞ � l�1 hð1Þn ðK�

c1aÞ�Cn þ ½2m�s1hð2Þ00
n ðK�

c1aÞ � l�1 hð2Þ
n ðK�

c1aÞ�Dng

þ
2m�s1nðn þ 1Þ

a2
f½hð1Þ

n ðK�
s1aÞ � K�

s1ahð1Þ
0

n ðK�
s1aÞ�En þ ½hð2Þn ðK�

s1aÞ � K�
s1ahð2Þ

0

n ðK�
s1aÞ�Fng

¼ �½ðior� 2mk2
c ÞjnðkcaÞ � 2mk2

c j
00
nðkcaÞ�f0; ð27cÞ

� 2m½hð1Þ
n ðkcaÞ � kcahð1Þ

0

n ðkcaÞ�An þ mf½2 � nðn þ 1Þ�hð1Þ
n ðksaÞ � k2

s a2hð1Þ
00

n ðksaÞgBn

þ 2m�s1f½K
�
c1ahð1Þ

0

n ðK�
c1aÞ � hð1Þ

n ðK�
c1aÞ�Cn þ ½K�

c1ahð2Þ
0

n ðK�
c1aÞ � hð2Þn ðK�

c1aÞ�Dng

� m�s1f½2 � nðn þ 1Þ�hð1Þ
n ðK�

s1aÞ � K�2
s1 a2hð1Þ00

n ðK�
s1aÞgEn � m�s1f½2 � nðn þ 1Þ�hð2Þ

n ðK�
s1aÞ

� K�2
s1 a2hð2Þ

00

n ðK�
s1aÞgFn ¼ 2m½jnðkcaÞ � kcaj

0
nðkcaÞ�f0; ð27dÞ

� K�
c1½Cnhð1Þ

0

n ðK�
c1bÞ þ Dnhð2Þ

0

n ðK�
c1bÞ� �

nðn þ 1Þ
b

½Enhð1Þn ðK�
s1bÞ þ Fnhð2Þ

n ðK�
s1bÞ�

þ K�
c2j

0
nðK

�
c2bÞGn þ

nðn þ 1Þ
b

QnjnðK
�
s2Þ ¼ 0; ð27eÞ

Cnhð1Þ
n ðK�

c1bÞ þ Dnhð2Þn ðK�
c1bÞ þ ½hð1Þ

n ðK�
s1bÞ þ K�

s1bhð1Þ
0

n ðK�
s1bÞ�En þ ½hð2Þn ðK�

s1bÞ

þ K�
s1bhð2Þ

0

n ðK�
s1bÞ�Fn � GnjnðK

�
c2bÞ � ½jnðK

�
s2bÞ þ K�

s2bj0nðK
�
s2bÞ�Qn ¼ 0; ð27fÞ

K�2
c1 f½l�1 hð1Þ

n ðK�
c1bÞ � 2m�s1hð1Þ00

n ðK�
c1bÞ�Cn þ ½l�1 hð2Þn ðK�

c1bÞ � 2m�s1hð2Þ00
n ðK�

c1bÞ�Dng

�
2nðn þ 1Þ

b2
m�s1f½�hð1Þn ðK�

s1bÞ þ K�
s1bhð1Þ

0

n ðK�
s1bÞ�En

þ ½�hð2Þn ðK�
s1bÞ þ K�

s1bhð2Þ
0

n ðK�
s1bÞ�Fng þ K�2

c2 ½2m�s2j
00
nðK

�
c2bÞ � l�2 jnðK

�
c2bÞ�Gn

�
2m�s2nðn þ 1Þ

b2
½jnðK

�
s2bÞ � K�

s2bj0nðK
�
s2bÞ�Qn ¼ 0; ð27gÞ
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2m�s1½K
�
c1bhð1Þ

0

n ðK�
c1bÞ � hð1Þ

n ðK�
c1bÞ�Cn þ 2m�s1½K

�
c1bhð2Þ

0

n ðK�
c1bÞ � hð2Þn ðK�

c1bÞ�Dn

� m�s1f½2 � nðn þ 1Þ�hð1Þ
n ðK�

s1bÞ � K�2
s1 b2hð1Þ00

n ðK�
s1bÞgEn

� m�s1f½2 � nðn þ 1Þ�hð2Þ
n ðK�

s1bÞ � K�2
s1 b2hð2Þ00

n ðK�
s1bÞgFn

� 2m�s2½K
�
c2bj0nðK

�
c2bÞ � jnðK

�
c2bÞ�Gn

þ m�s2½½2 � nðn þ 1Þ�jnðK
�
s2bÞ � K�2

s2 j
00
nðK

�
s2bÞ�Qn ¼ 0; ð27hÞ

where n ¼ 0; 1; 2;y; except for Eqs. (27b,d,f,h) where n ¼ 1; 2;y :

5. Scattering of sound waves by a compound cylinder

Here, a compressional planar monochromatic sound wave of angular frequency o obliquely
incident upon a compound viscoelastic cylinder immersed in an unbounded viscous fluid at rest
(Fig. 1b) is considered. The dynamics of the problem may be expressed in terms of appropriate
scalar potentials. First, the expansion of the incident plane wave in cylindrical co-ordinate has the
form [34]

jinc: ¼ f0

XN
n¼0

eni
nJnðgcrÞ cos nyeikzz; ð28Þ

where e0 ¼ 1; and en ¼ 2 for n > 0;f0 is the amplitude of the incident wave, Jn are cylindrical

Bessel functions of first kind [35], and gc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

c � k2
z

p
in which kz ¼ Reðkc sin aÞ where a is the

angle of plane wave incidence. Second, noting that the fluid medium is unbounded and keeping in
mind the radiation condition, the solution can be expressed as a linear combination of outgoing
cylindrical waves as follows:

jc ¼
XN
n¼0

AnH ð1Þ
n ðgcrÞ cos nyeikzz; cy ¼ �

XN
n¼0

BnH
ð1Þ
nþ1ðgsrÞ cos nyeikzz;

cr ¼
XN
n¼1

BnH
ð1Þ
nþ1ðgsrÞ sin nyeikzz; cz ¼

XN
n¼1

CnH ð1Þ
n ðgsrÞ sin nyeikzz; ð29Þ

where H ð1Þ
n are cylindrical Hankel functions of first kind [35], An;Bn and Cn are unknown

scattering coefficients, and gs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

s � k2
z

p
: Third, the longitudinal and transverse waves in the

viscoelastic coating (medium I) are represented by

Fð1Þ ¼
XN
n¼0

½DnHð1Þ
n ðGc1rÞ þ EnH ð2Þ

n ðGc1rÞ� cos nyeikzz;

Cð1Þ
r ¼

XN
n¼1

½FnH
ð1Þ
nþ1ðGs1rÞ þ GnH

ð2Þ
nþ1ðGs1rÞ� sin nyeikzz;
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Cð1Þ
y ¼ �

XN
n¼0

½FnH
ð1Þ
nþ1ðGs1rÞ þ GnH

ð2Þ
nþ1ðGs1rÞ� cos nyeikzz;

Cð1Þ
z ¼

XN
n¼1

½KnH ð1Þ
n ðGs1rÞ þ LnH ð2Þ

n ðGs1rÞ� sin nyeikzz; ð30Þ

where Hð2Þ
n are cylindrical Hankel functions of second kind [35], and Gc1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K�2

c1 � k2
z

p
; Gs1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K�2
s1 � k2

z

p
: Furthermore, the transmitted waves in the core (medium II) are

Fð2Þ ¼
XN
n¼0

MnJnðGc2rÞ cos nyeikzz; Cð2Þ
y ¼ �

XN
n¼0

NnJnþ1ðGs2rÞ cos nyeikzz;

Cð2Þ
r ¼

XN
n¼1

NnJnþ1ðGs2rÞ sin nyeikzz; Cð2Þ
z ¼

XN
n¼1

QnJnðGs2rÞ sin nyeikzz; ð31Þ

where Gc2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K�2

c2 � k2
z

p
and Gs2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K�2

s2 � k2
z

p
:

Now considering the basic field equations in cylindrical co-ordinates, the velocity components
of the waves in r- and y-directions in terms of potentials in the viscous fluid are [19]

ur ¼ �
@j
@r

þ
1

r

@cz

@y
�

@cy

@z
; ð32aÞ

uy ¼ �
1

r

@j
@y

þ
@cr

@z
�

@cz

@r
; ð32bÞ

uz ¼ �
@j
@z

þ
1

r

@ðrcyÞ
@r

�
1

r

@cr

@y
; ð32cÞ

where j ¼ jinc: þ jc: Similarly, the relevant displacements in the viscoelastic scatterer are [33]

Us1
r ¼

@Fð1Þ

@r
þ

1

r

@Cð1Þ
z

@y
�

@Cð1Þ
y

@z
; Us2

r ¼
@Fð2Þ

@r
þ

1

r

@Cð2Þ
z

@y
�

@Cð2Þ
y

@z
;

Us1
y ¼

1

r

@Fð1Þ

@y
þ
@Cð1Þ

r

@z
�

@Cð1Þ
z

@r
; Us2

y ¼
1

r

@Fð2Þ

@y
þ
@Cð2Þ

r

@z
�

@Cð2Þ
z

@r
;

Us1
z ¼

@Fð1Þ

@z
þ

1

r

@ðrCð1Þ
y Þ

@r
�

1

r

@Cð1Þ
r

@y
;

Us2
z ¼

@Fð2Þ

@z
þ

1

r

@ðrCð2Þ
y Þ

@r
�

1

r

@Cð2Þ
r

@y
: ð33Þ

The stress components in the fluid are [19,20]

srr ¼ �p þ ðmb � 2m=3ÞDþ 2mð@ur=@rÞ; ð34aÞ

sry ¼ m
1

r

@ur

@y
þ
@uy

@r
�

uy

r

� �
; srz ¼ m

@ur

@z
þ

@uz

@r

� �
ð34bÞ

and the corresponding stresses in the viscoelastic scatterer are [33]
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ss1
rr ¼ 2m�s1

@Us1
r

@r
þ l�1 e1; ss2

rr ¼ 2m�s2

@Us2
r

@r
þ l�2 e2;

ss1
ry ¼ m�s1

1

r

@Us1
r

@y
þ
@Us1

y

@r
�

Us1
y

r

� �
; ss2

ry ¼ m�s2

1

r

@Us2
r

@y
þ

@Us2
y

@r
�

Us2
y

r

� �
;

ss1
rz ¼ m�s1

@Us1
r

@z
þ

@Us1
z

@r

� �
; ss2

rz ¼ m�s2

@Us2
r

@z
þ

@Us2
z

@r

� �
; ð35Þ

where e1 ¼ r 
Us1 ¼ r2Fð1Þ ¼ �K�2
c1 F

ð1Þ; and e2 ¼ r 
Us2 ¼ r2Fð2Þ ¼ �K�2
c2 Fð2Þ:

The appropriate boundary conditions that must hold at the interfaces are simply continuity of
velocities and stresses that are written as

urðr; y;oÞ�r¼a ¼ �ioUs1
r ðr; y;oÞ�r¼a; Us1

r ðr; y;oÞ�r¼b ¼ Us2
r ðr; y;oÞ�r¼b;

uyðr; y;oÞ�r¼a ¼ �ioUs1
y ðr; y;oÞ�r¼a; Us1

y ðr; y;oÞ�r¼b ¼ Us2
y ðr; y;oÞ�r¼b;

uzðr; y;oÞ�r¼a ¼ �ioUs1
z ðr; y;oÞ�r¼a; Us1

z ðr; y;oÞ�r¼b ¼ Us2
z ðr; y;oÞ�r¼b;

srrðr; y;oÞ�r¼a ¼ ss1
rr ðr; y;oÞ�r¼a; ss1

rr ðr; y;oÞ�r¼b ¼ ss2
rr ðr; y;oÞ�r¼b;

sryðr; y;oÞ�r¼a ¼ ss1
ryðr; y;oÞ�r¼a; ss1

ryðr; y;oÞ�r¼b ¼ ss2
ryðr; y;oÞ�r¼b;

srzðr; y;oÞ�r¼a ¼ ss1
rzðr; y;oÞ�r¼a; ss1

rzðr; y;oÞ�r¼b ¼ ss2
rzðr; y;oÞ�r¼b: ð36Þ

At this point the unknown scattering coefficients shall be determined by imposing the stated
boundary conditions. Employing expansions (28)–(31) in the field equations (32)–(35), and
substituting obtained results into the boundary conditions (36), one obtains, for the nth mode

� gcAnH ð1Þ0
n ðgcaÞ þ ikzBnH

ð1Þ
nþ1ðgsaÞ þ

n

a
CnHð1Þ

n ðgsaÞ;

þ ioGc1½DnH ð1Þ0
n ðGc1aÞ þ EnH ð2Þ0

n ðGc1aÞ� � okz½FnH
ð1Þ
nþ1ðGs1aÞ þ GnH

ð2Þ
nþ1ðGs1aÞ�

þ io
n

a
½KnH ð1Þ

n ðGs1aÞ þ LnH ð2Þ
n ðGs1aÞ� ¼ f0eni

ngcJ
0
nðgcaÞ; ð37aÞ

n

a
AnH ð1Þ

n ðgcaÞ þ ikzBnH
ð1Þ
nþ1ðgsaÞ � gsCnH ð1Þ0

n ðgsaÞ

� io
n

a
½DnH ð1Þ

n ðGc1aÞ þ EnH ð2Þ
n ðGc1aÞ� � okz½FnH

ð1Þ
nþ1ðGs1aÞ þ GnH

ð2Þ
nþ1ðGs1aÞ�

� ioGs1½KnH ð1Þ0
n ðGs1aÞ þ LnHð2Þ0

n ðGs1aÞ� ¼ �f0

n

a
eni

nJnðgcaÞ ð37bÞ

� ikzaAnH ð1Þ
n ðgcaÞ � ½ðn þ 1ÞH ð1Þ

nþ1ðgsaÞ þ gsaH
ð1Þ0

nþ1ðgsaÞ�Bn

� okza½DnHð1Þ
n ðGc1aÞ þ EnH ð2Þ

n ðGc1aÞ� � iof½ðn þ 1ÞH ð1Þ
nþ1ðGs1aÞ þ Gs1aH

ð1Þ0

nþ1ðGs1aÞ�Fn

þ ½ðn þ 1ÞH ð2Þ
nþ1ðGs1aÞ þ Gs1aH

ð2Þ0

nþ1ðGs1aÞ�Gng ¼ f0eni
nþ1kzaJnðgcaÞ; ð37cÞ
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½ðior� 2mk2
c ÞH

ð1Þ00
n ðgcaÞ � 2mg2

cH ð1Þ00
n ðgcaÞ�An þ 2imkzgsH

ð1Þ0

nþ1ðgsaÞBn �
2mn

a2
½H ð1Þ

n ðgsaÞ

� gsaHð1Þ0
n ðgsaÞ�Cn � ½2m�s1G

2
c1H ð1Þ00

n ðGc1aÞ � l�1 K�2
c1 H ð1Þ

n ðGc1aÞ�Dn

� ½2m�s1G
2
c1H ð2Þ00

n ðGc1aÞ � l�1 K�2
c1 H ð2Þ

n ðGc1aÞ�En � 2im�s1kzGs1½FnH
ð1Þ0

nþ1ðGs1aÞ þ GnH
ð2Þ0

nþ1ðGs1aÞ�

þ
2m�s1n

a2
f½H ð1Þ

n ðGs1aÞ � Gs1aHð1Þ0
n ðGs1aÞ�Kn þ ½H ð2Þ

n ðGs1aÞ � Gs1aHð2Þ0
n ðGs1aÞ�Lng

¼ �f0eni
n½ðior� 2mk2

c ÞJnðgcaÞ � 2mg2
cJ

00
nðgcaÞ�; ð37dÞ

� 2mn½H ð1Þ
n ðgcaÞ � agcH

ð1Þ0
n ðgcaÞ�An � ikzm½ðn þ 1ÞaH

ð1Þ
nþ1ðgsaÞ � gsa

2H
ð1Þ0

nþ1ðgsaÞ�Bn

� m½n2H ð1Þ
n ðgsaÞ þ g2

s a2H ð1Þ00
n ðgsaÞ � agsH

ð1Þ0
n ðgsaÞ�Cn

� 2m�s1nf½H ð1Þ
n ðGc1aÞ � aGc1H ð1Þ0

n ðGc1aÞ�Dn þ ½H ð2Þ
n ðGc1aÞ � aGc1H ð2Þ0

n ðGc1aÞ�Eng

þ ikzm�s1f½ðn þ 1ÞaH
ð1Þ
nþ1ðGs1aÞ � Gs1a2H

ð1Þ0

nþ1ðGs1aÞ�Fn þ ½ðn þ 1ÞaH
ð2Þ
nþ1ðGs1aÞ

� Gs1a2H
ð2Þ0

nþ1ðGs1aÞ�Gng þ m�s1½n
2H ð1Þ

n ðGs1aÞ þ G2
s1a2H ð1Þ00

n ðGs1aÞ � aGs1H ð1Þ0
n ðGs1aÞ�Kn

þ m�s1½n
2H ð2Þ

n ðGs1aÞ þ G2
s1a2H ð2Þ00

n ðGs1aÞ � aGs1H ð2Þ0
n ðGs1aÞ�Ln

¼ 2mnf0eni
n½JnðgcaÞ � agcJ

0
nðgcaÞ�; ð37eÞ

� 2ikzma2gcAnH ð1Þ0
n ðgcaÞ

þ mf½n þ 1 � a2k2
z �H

ð1Þ
nþ1ðgsaÞ � gsaðn þ 1ÞH ð1Þ0

nþ1ðgsaÞ � g2
s a2H

ð1Þ00

nþ1ðgsaÞgBn

þ ikzmanCnHð1Þ
n ðgsaÞ � 2ikzm�s1a2Gc1½DnH ð1Þ0

n ðGc1aÞ þ EnH ð2Þ0
n ðGc1aÞ�

� m�s1f½n þ 1 � a2k2
z �H

ð1Þ
nþ1ðGs1aÞ � Gs1aðn þ 1ÞH ð1Þ0

nþ1ðGs1aÞ � G2
s1a2H

ð1Þ00

nþ1ðGs1aÞgFn

� m�s1f½n þ 1 � a2k2
z �H

ð2Þ
nþ1ðGs1aÞ � Gs1aðn þ 1ÞH ð2Þ0

nþ1ðGs1aÞ � G2
s1a2H

ð2Þ00

nþ1ðGs1aÞgGn

� ikzm�s1an½KnH ð1Þ
n ðGs1aÞ þ LnH ð2Þ

n ðGs1aÞ� ¼ 2f0ma2eni
nþ1kzgcJ

0
nðgcaÞ; ð37fÞ

Gc1½DnHð1Þ0
n ðGc1bÞ þ EnH ð2Þ0

n ðGc1bÞ� þ ikz½FnH
ð1Þ
nþ1ðGs1bÞ þ GnH

ð2Þ
nþ1ðGs1bÞ� þ

n

b
½KnHð1Þ

n ðGs1bÞ

þ LnH ð2Þ
n ðGs1bÞ� � Gc2MnJ

0
nðGc2bÞ � ikzNnJnþ1ðGs2bÞ �

n

b
QnJnðGs2bÞ ¼ 0; ð37gÞ

�
n

b
½DnH ð1Þ

n ðGc1bÞ þ EnHð2Þ
n ðGc1bÞ� þ ikz½FnH

ð1Þ
nþ1ðGs1bÞ þ GnH

ð2Þ
nþ1ðGs1bÞ� � Gs1½KnH ð1Þ0

n ðGs1bÞ

þ LnH ð2Þ0
n ðGs1bÞ� þ

n

b
MnJnðGc2bÞ � ikzNnJnþ1ðGs2bÞ þ Gs2QnJ

0
nðGs2bÞ ¼ 0; ð37hÞ

ikzb½DnH ð1Þ
n ðGc1bÞ þ EnH ð2Þ

n ðGc1bÞ� � ½ðn þ 1ÞH ð1Þ
nþ1ðGs1bÞ þ Gs1bH

ð1Þ0

nþ1ðGs1bÞ�Fn

� ½ðn þ 1ÞH ð2Þ
nþ1ðGs1bÞ þ Gs1bH

ð2Þ0

nþ1ðGs1bÞ�Gn � ikzbMnJnðGc2bÞ þ ½ðn þ 1ÞJnþ1ðGs2bÞ

þ Gs2bJ0nþ1ðGs2bÞ�Nn ¼ 0; ð37iÞ
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½�l�1 K�2
c1 Hð1Þ

n ðGc1bÞ þ 2m�s1G
2
c1H ð1Þ00

n ðGc1bÞ�Dn þ ½�l�1 K�2
c1 H ð2Þ

n ðGc1bÞ þ 2m�s1G
2
c1H ð2Þ00

n ðGc1bÞ�En

þ 2ikzm�s1Gs1½FnH
ð1Þ0

nþ1ðGs1bÞ þ GnH
ð2Þ0

nþ1ðGs1bÞ� �
2m�s1n

b2
f½H ð1Þ

n ðGs1bÞ � bGs1H ð1Þ0
n ðGs1bÞ�Kn

þ ½H ð2Þ
n ðGs1bÞ � bGs1H ð2Þ0

n ðGs1bÞ�Lng � ½�l�2 K�2
c2 JnðGc2bÞ þ 2m�s2G

2
c2J

00
nðGc2bÞ�Mn

� 2ikzm�s2Gs2NnJ
0
nþ1ðGs2bÞ þ

2m�s2n

b2
½JnðGs2bÞ � bGs2J

0
nðGs2bÞ�Qn ¼ 0; ð37jÞ

2m�s1nf½H ð1Þ
n ðGc1bÞ � bGc1H ð1Þ0

n ðGc1bÞ�Dn þ ½H ð2Þ
n ðGc1bÞ � bGc1H ð2Þ0

n ðGc1bÞ�Eng

� ikzm�s1f½ðn þ 1ÞbH
ð1Þ
nþ1ðGs1bÞ � Gs1b2H

ð1Þ0

nþ1ðGs1bÞ�Fn þ ½ðn þ 1ÞbH
ð2Þ
nþ1ðGs1bÞ

� Gs1b2H
ð2Þ0

nþ1ðGs1bÞ�Gng � m�s1½n
2H ð1Þ

n ðGs1bÞ þ G2
s1b2H ð1Þ00

n ðGs1bÞ

� bGs1H ð1Þ0
n ðGs1bÞ�Kn � m�s1½n

2H ð2Þ
n ðGs1bÞ þ G2

s1b2H ð2Þ00
n ðGs1bÞ � bGs1H ð2Þ0

n ðGs1bÞ�Ln

� 2m�s2n½JnðGc2bÞ � bGc2J
0
nðGc2bÞ�Mn þ ikzm�s2½ðn þ 1ÞbJnþ1ðGs2bÞ

� Gs2b2J0nþ1ðGs2bÞ�Nn þ m�s2½n
2JnðGs2bÞ þ G2

s2b2J00nðGs2bÞ � bGs2J
0
nðGs2bÞ�Qn ¼ 0; ð37kÞ

2ikzm�s1b2Gc1½DnH ð1Þ0
n ðGc1bÞ þ EnH ð2Þ0

n ðGc1bÞ� þ m�s1f½n þ 1 � b2k2
z �H

ð1Þ
nþ1ðGs1bÞ

� Gs1bðn þ 1ÞH ð1Þ0

nþ1ðGs1bÞ � G2
s1b2H

ð1Þ00

nþ1ðGs1bÞgFn þ m�s1f½n þ 1 � b2k2
z �H

ð2Þ
nþ1ðGs1bÞ

� Gs1bðn þ 1ÞH ð2Þ0

nþ1ðGs1bÞ � G2
s1b2H

ð2Þ00

nþ1ðGs1bÞgGn þ ikzm�s1bn½KnHð1Þ
n ðGs1bÞ þ LnH ð2Þ

n ðGs1bÞ�

� 2ikzm�s2b2Gc2MnJ
0
nðGc2bÞ � m�s2f½n þ 1 � b2k2

z �Jnþ1ðGs2bÞ � Gs2bðn þ 1ÞJ0nþ1ðGs2bÞ

� G2
s2b2J00nþ1ðGs2bÞgNn � ikzm�s2bnQnJnðGs2bÞ ¼ 0 ð37lÞ

where n ¼ 0; 1; 2;y; except for Eqs. (37b, e, h, k) where n ¼ 1; 2;y :

6. Numerical results

In order to illustrate the nature and general behaviour of the solution, a numerical example is
considered in this section. Realizing the large number of parameters involved here, no attempt is
made to exhaustively evaluate the effect of varying each of them. The intention is merely to
illustrate the kinds of results to be expected from some representative and physically realistic
choices of values for these parameters. From these data some trends are noted and general
conclusions made about the relative importance of certain parameters. Noting the crowd of
parameters that enter into the final expressions and keeping in view the availability of numerical
data, attention will be confined to a particular model. The surrounding fluid is taken to be
glycerine with its assumed properties displayed in Table 1 [36]. As there are no reliable data found
for the bulk viscosity of glycerine, its numerical value is presumed to be nearly equal to that of the
shear viscosity. The scatterer core material is taken to be stainless steel and the viscoelastic coating
is assumed to be elastomeric with a fixed outer radius of a ¼ 0:05 cm: Hartmann et al. [30],
reported for the first time, all the input parameters necessary for a complete description of
viscoelastic material properties for a set of (polyurethane) polymers within the context of
Havriliak–Negami (HN) theory. The HN fitting parameters for two selected polymers with
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distinctively different dynamic viscoelastic properties in the frequency range of interest are
compiled in Table 2. The corresponding fit of HN equations for real and imaginary parts of the
shear modulus (e.g., Eqs. (1)), for the selected polymers in a wide frequency range, are displayed
in Fig. 2. It is clear that polymer 18 has a relatively high damping (i.e., loss factor or
ZðoÞ ¼ G00ðoÞ=G0ðoÞ), as compared with polymer 19, in the frequency range of interest
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Table 1

Parameter values used in calculations

Parameter Glycerine Water

m (kg/m.s) 0.95 0.000894

mb (kg/m.s) 0.95 0.00250

c (m/s) 1:91 � 103 1:48 � 103

r ðkg=m3Þ 1250 1000

Table 2

Havriliak–Negami fitting parameters [30]

Parameter Polymer 18 Polymer 19

G0 (Pa) 3:372 � 106 5:019 � 106

GN (Pa) 1:453 � 109 0:8089 � 109

rs ðkg=m3Þ 1101 1096

t (s) 3:139 � 10�9 1:702 � 10�1

a 0.4822 0.4941

b 0.4116 0.1356

n 0.4 0.4

1.0E+04

1.0E+06

1.0E+08

1.0E+10

1.0E-07 1.0E-02 1.0E+03 1.0E+08 1.0E+13

Nondimensional Frequency, ka

Sh
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r 
M
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ul
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P
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Fig. 2. The HN-fit for real and imaginary parts of the shear modulus for the selected polymers in a wide frequency

range [— G0ðoÞ; Polymer 18; . . G00ðoÞ; Polymer 18; G0ðoÞ; Polymer 19; yyG00ðoÞ; Polymer 19].
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(0:1okao10). Accurate computation of Bessel functions of complex argument is achieved using
MATLAB specialized math functions ‘‘besselh’’ and ‘‘besselj’’. The derivatives of Bessel functions
were calculated by utilizing (9.1.27), (10.1.19) and (10.1.22) in Ref. [35]. Two separate MATLAB
codes were constructed to calculate the unknown scattering coefficients and relevant acoustic field
quantities as functions of non-dimensional frequency ka ¼ oa=c for the coated sphere and the
coated cylinder, respectively.
The most relevant acoustic field quantities are the scattered farfield pressure and the scattering

form-function. Using Eq. (24), the scattered farfield pressure amplitude is simply written as

jpscat
N

ðr; y;oÞj ¼ lim
r-N

j � iorjcðr; y;oÞ þ k2
c ðmb þ

4
3
mÞjcðr; y;oÞj: ð38Þ

The standard definition of the (farfield) form-function amplitude is given by [5]

j fNðr; y;oÞj � lim
r-N

2r

a

� �1=z jcðr; y;oÞ
f0

�����
�����; ð39Þ

where z ¼ 1 ðz ¼ 2Þ for acoustic scattering from the compound sphere (cylinder). Fig. 3 displays
the angular distribution of the scattered farfield pressure (i.e., jpscat

N
ðr; y;oÞj=rc2) for a unit

amplitude plane wave (f0 ¼ 1:) incident upon a compound sphere with a steel core and an
elastomeric coating immersed in glycerine at selected dimensionless wave numbers and coating
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Fig. 3. Normalized farfield scattered pressure directivity patterns, jpscat:ðrN; yÞj=rc2; for a viscoelastically coated steel

sphere immersed in glycerine at selected dimensionless wave numbers and coating thicknesses [& b=a ¼ 1 (solid steel);

b=a ¼ 0:9; . . b=a ¼ 0:5; — b=a ¼ 0:2; � b=a ¼ 0 (solid polymer)] .
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thicknesses. The farfield value of the radial co-ordinate in each case was simply chosen by making
several computer runs while seeking for the convergence of the scattered pressure directivity
patterns. The choice of rN ¼ 10a was found to be adequate for all cases. Furthermore, a
maximum number of 40 modes were included in all summations in order to assure convergence in
the high frequencies. It is very interesting to notice the change in directionality of the scattered
waves as the frequency is varied. As seen from the figure, at low and intermediate frequencies (i.e.,
at ka ¼ 0:1; 1) increasing the thickness of the polymeric coating 19 causes a noticeable decrease in
the scattered farfield pressure directionality. At these frequencies, the polymeric coating 18, which
has the highest loss factor in our frequency range of interest, leads to almost uniform directivity
patterns for all coating thicknesses. As the frequency increases to ka ¼ 10; the pressure patterns
become highly directional, especially for the polymeric coating 19 that has a relatively low
damping. At this frequency, the scattered farfield pressure associated with the polymeric coating
18 is comparatively less directional and it seems to be nearly independent of the coating thickness.
The most surprizing observation is perhaps the fact that the scattered pressure magnitudes for the
coated sphere 18 (sphere 19) are on the whole distinctly higher than (comparable to) that of the
solid steel sphere, especially at low and intermediate frequencies. A physical explanation for this
apparently non-trivial result is presented below.
Fig. 4 displays the variation of the backward-scattered farfield pressure magnitude (i.e.,

j fNðr; y;oÞjy¼p; or the form function amplitude) with nondimensional frequency and coating
thickness. Here it is noted that b=a ¼ 1 refers to a solid steel sphere with no coating and b=a ¼ 0 is
a simple elastomeric sphere. The main observation for polymeric coating 18 is the presence of a
single relatively wide peak for each coating thickness at lower frequencies (i.e., kao1:7). As the
coating thickness increases (b=a decreases), the peaks in the form function curves drop
considerably as they to shift to lower frequencies. For b=ao0:6 there are almost no resonances in
the intermediate frequencies and only a relatively small peak is observed near kaE0:4: In case of
the polymeric coating 19, on the other hand, the resonance frequencies significantly depend on the
coating thickness and there are numerous relatively sharp resonances observed in the low to
intermediate frequencies. The observed oscillatory behaviour is due to the effect of acoustic
resonant scattering, i.e., when an acoustic wave is incident upon an object, the wave induces the
eigenmode oscillation of the object and the motion of the object, in turn, affects the scattering
pattern of the wave [37]. As the thickness of the polymeric coating 19 decreases, these resonances
begin to become wider (fewer) as they shift to lower frequencies, and eventually in case of the solid
steel sphere there are no perceptible resonance peaks observed in the frequency range of our
interest. The above observations suggest that the characteristically high (moderate) scattered
pressure magnitudes observed in Fig. 3 for the polymeric sphere 18 (sphere 19) at low and
intermediate frequencies, in comparison with the solid steel sphere case, is a direct consequence of
acoustic resonant scattering effects at these frequencies.
The seemingly unusual results obtained in Fig. 3 may further be clarified if the eigenfrequencies

of a solid sphere is studied. Ye [38] considered the problem of free vibration of a solid elastic
sphere and deduced the corresponding exact eigenfrequency equation (see their Eqs. (16)) using
the standard textbook (infinite series) approach. Extension of the latter work to determine the
general eigenfrequency equation of a viscoelastic sphere is quite straightforward. Therefore,
following Ye’s approach in solving the corresponding boundary value problem, the
eigenfrequency equation associated with general free oscillations of a solid viscoelastic sphere
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(after some manipulations) is obtained as

det
K�2

c ½2m�s ðoÞj
00
nðK

�
c aÞ � l�ðoÞjnðK

�
c aÞ�

2nðn þ 1Þm�s ðoÞ
a2

½aK�
s j

0
nðK

�
s aÞ � jnðK

�
s aÞ�

2

a2
jnðK

�
c aÞ �

2

a
K�

c j
0
nðK

�
c aÞ

2 � nðn þ 1Þ
a2

jnðK
�
s aÞ � K�2

s j00nðK
�
s aÞ�

��������

��������
¼ 0: ð40Þ

Eigenequation (40) is solvable numerically. However, due to the oscillatory behaviour of the
Bessel functions, there are an infinite number of eigenfrequencies associated with each multipole n:
Table 3 compares the first four (non-zero) eigenfrequencies associated with the n ¼ 0 (monopole
or spheroidal) and n ¼ 1 (dipole or toroidal) modes of polymeric sphere’s oscillation with that of
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Fig. 4. The variation of the form function amplitude with non-dimensional frequency and coating thickness for a

compound sphere.
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the solid stainless steel sphere. These results are generated using a MATLAB code that was
developed on the basis of an automatic root-searching algorithm in the complex plane.
Examination of the numerical data in Table 3 further confirms that the typically high (moderate)
scattered pressure amplitudes for the polymeric sphere 18 (sphere 19) in comparison with the solid
steel sphere case, especially at low and intermediate frequencies, is due to the fact that the
eigenfrequencies associated with the (visco)elastic resonances of the solid steel sphere (coated
spheres) predominantly fall outside (inside) this frequency range. Furthermore, comparatively
high imaginary parts for the computed eigenfrequencies of the polymeric sphere 18 (i.e., high
damping in the associated eigenmodes [39]) are noticed, which explains the relatively wide
resonances observed in the corresponding form function plot. In addition, repeating the above
analysis for a submerged solid sphere is numerically checked to yield roughly the same
eigenfrequencies, especially for the n ¼ 0 (monopole) mode.
In order to check the overall validity of the first part of the work it was initially noted that the

farfield scattered pressure directivity patterns associated with the solid polymers as noted by cross-
markers (b=a ¼ 0) in Fig. 3, accurately duplicate the numerical results shown in Figs. 3, 4 and 6 in
Ref. [22]. Furthermore, keeping in mind the lack of any reliable numerical results for acoustic
scattering from a compound elastic sphere in the literature, a general MATLAB code was used to
compute the angular distribution of the form function amplitude (j fNðr; y;oÞj) for a compound
sphere with a polystyrene core and an elastomeric coating of the same material immersed in water
(Table 1) at selected dimensionless wave numbers (ka ¼ 1; 10). The numerical results, as displayed
in Fig. 5, reasonably well follow the (approximate) T-matrix results for scattering from a solid
polystyrene sphere immersed in (inviscid) water (see Fig. 54, p. 265 in Ref. [5]).
Fig. 6 displays the angular distribution of the scattered farfield pressure due to normal

incidence (a ¼ 0) of a unit amplitude (f0 ¼ 1:) plane wave on a compound cylinder with a steel
core and elastomeric coating immersed in glycerine at selected dimensionless wave numbers and
coating thicknesses. Here, observations analogous to the coated sphere case (Fig. 3) can be made.
In particular, the patterns are very uniform at the lowest frequency, especially for the coated
cylinder 18. At this frequency, increasing the thickness of the polymeric coating 19 causes a
noticeable decrease in the scattered farfield pressure directionality, while the polymeric coating 18,
which has the highest loss factor in the frequency range of interest, leads to almost circular
directivity patterns for all coating thicknesses. As the frequency increases, the patterns become
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Table 3

Comparison between the computed eigenfrequencies of the polymeric spheres with those of steel sphere

Mode number Polymer 18 Polymer 19 Stainless steel

n ¼ 0 0:346 þ 0:964i 0:852 þ 0:0316i 4.203

0:663 þ 0:307i 2:106 þ 0:0705i 8.540

1:163 þ 0:532i 3:285 þ 0:105i 10.187

1:653 þ 0:607i 4:450 þ 0:137i 15.746

n ¼ 1 0:361 þ 0:167i 1:300 þ 0:0459i 6.034

0:873 þ 0:402i 2:616 þ 0:0855i 12.139

1:453 þ 0:660i 3:915 þ 0:122i 13.808

1:983 þ 0:889i 5:005 þ 0:152i 18.316
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Fig. 5. The angular distribution of the form function amplitude for a solid polystyrene sphere immersed in water at

selected dimensionless wave numbers ( MATLAB Code; � T-matrix results [5]).

Fig. 6. Normalized farfield scattered pressure directivity patterns, jpscat:ðrN; yÞj=rc2; for a viscoelastically coated steel

cylinder immersed in glycerine at selected dimensionless wave numbers and coating thicknesses [&b=a ¼ 1 (solid steel);

b=a ¼ 0:9; . . b=a ¼ 0:5; — b=a ¼ 0:2; � b=a ¼ 0 (solid polymer)].
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more directional while their magnitudes considerably increase, especially for the polymeric
coating 19 that has a relatively low damping. In addition, relatively high back-scattered pressure
amplitudes for both polymeric cylinders at the intermediate and large frequencies (i.e., at
ka ¼ 1; 10) are noted. The most notable observation is, once more, the distinctly high scattered
pressure magnitudes for the coated cylinder 18 in comparison with the solid steel cylinder,
especially at low and intermediate frequencies. The physical explanation of this effect can be
discussed as in the case of the polymeric sphere.
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Fig. 7. The variations of the form function amplitude with non-dimensional frequency and coating thickness for

normal wave incidence (a ¼ 0) incident upon the coated cylinder.
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Fig. 7 displays the variations of the form function amplitude with non-dimensional frequency
and coating thickness for normal wave incidence (a ¼ 0) upon the coated cylinder. Similar to the
coated sphere case, the main observation for coated cylinder 18 is that the resonances in the form
function curves begin to shift to very low frequencies as the coating thickness increases. For this
polymer for b=ao0:2; there are no significant resonances at the intermediate and high frequencies
while a single fundamental peak is observed near kaE0:2: Furthermore, the form function curves
for b=ap0:8 gradually rise as the frequency increases. The latter observation is in agreement with
the relatively large back-scattering pressure amplitude noted for coated cylinder 18 at ka ¼ 10 in
Fig. 6. For the coated cylinder 19, on the other hand, very few relatively small magnitude
resonances are observed for small coating thicknesses (i.e., b=a > 0:6). As the coating thickness is
increased, the magnitude and number of these resonances increase especially in the intermediate
and high-frequency range. Fig. 8 displays the 6form function amplitude curves for oblique
(a ¼ p=4) wave incidence upon the coated cylinder. Remarks similar to above discussion can be
made. It is clear that the resonance frequencies of the coated cylinder 18 (cylinder 19) are
somewhat (moderately) dependent on the angle of incidence. In particular, the main effect of
increasing the angle of incidence on the form function curves of the coated cylinder 18 (cylinder
19) seems to be the slight (modest) shift in the resonant peaks to the lower frequencies.
Finally, to check overall validity of the second part of the work a general MATLAB code was

used for the coated cylinder to compute the form function amplitude (i.e.,ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rN=a

p
j pscat

N
ðr; y;oÞ=ð�iorÞf0jy¼p expð�ikrN cos aÞ; as defined in Ref. [40]), versus non-

dimensional frequency for oblique plane wave incidence (a ¼ 0;p=6) upon a copper-clad
aluminium rod immersed in water. Physical properties of the cladding and the core materials are
assumed as in Table 1 in Ref. [40]. The outer radius of the clad rod is a ¼ 0:915 cm and its core
radius is b ¼ 0:870 cm: Fig. 9 demonstrates that the numerical results closely follow the numerical
data extracted from Fig. 2 in Ref. [40].

7. Conclusions

This work presents analytical solutions as well as numerical results for the boundary value
problem concerning the interaction of a plane sound wave with a coated sphere and a coated
cylinder immersed in viscous fluids. The prime objective is to investigate the effects of dynamic
viscoelastic properties of coating material on acoustic scattering and its associated quantities.
Numerical results reveal that for the (low-damping) polymeric coating 19, the scattered farfield
pressure directivity patterns at small and intermediate non-dimensional frequencies are highly
dependent on the coating thickness. At these frequencies, the polymeric coating 18, which has the
highest loss factor in the frequency range of interest, leads to very uniform pressure patterns for
essentially all coating thicknesses. Furthermore, the scattered pressure magnitudes associated with
this polymer are on the whole distinctly higher than that of the solid steel scatterer, especially at
the lowest frequency. The physical rationalization for this apparently non-trivial result is
associated with acoustic resonant scattering effects by noting the presence of a fundamental peak
in the corresponding form function amplitude plots at relatively low frequencies. The situation is
clarified more by studying free vibration of a solid (visco)elastic sphere. Numerical solution of the
resultant eigenfrequency equation further confirms that the comparatively high (moderate)
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scattered farfield pressure amplitudes observed for the polymeric sphere 18 (sphere 19) at low and
intermediate frequencies is because the eigenfrequencies associated with (visco)elastic resonances
of the coated spheres (solid steel sphere) predominantly fall inside (outside) this frequency range.
The proposed model can lead to a better understanding of dynamic response of compound
viscoelastic scatterers in an acoustic field. It may be equally useful in complementing the
nondestructive evaluation (NDE) [25] and inverse scattering [41] techniques that have been
developed to characterize the physical properties of viscoelastic materials (coatings) from
laboratory measurements of scattered acoustic field.
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